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Figure 1: Remeshing a scanned dragon with 13 million vertices into feature-aligned isotropic triangle and quad meshes with ∼80k vertices.
From left to right, for both cases: visualizations of the orientation field, position field, and the output mesh (computed in 71.1 and 67.2 seconds,
respectively). For the quad case, we optimize for a quad-dominant mesh at quarter resolution and subdivide once to obtain a pure quad mesh.

Abstract

We present a novel approach to remesh a surface into an isotropic
triangular or quad-dominant mesh using a unified local smoothing
operator that optimizes both the edge orientations and vertex po-
sitions in the output mesh. Our algorithm produces meshes with
high isotropy while naturally aligning and snapping edges to sharp
features. The method is simple to implement and parallelize, and
it can process a variety of input surface representations, such as
point clouds, range scans and triangle meshes. Our full pipeline
executes instantly (less than a second) on meshes with hundreds
of thousands of faces, enabling new types of interactive workflows.
Since our algorithm avoids any global optimization, and its key
steps scale linearly with input size, we are able to process extremely
large meshes and point clouds, with sizes exceeding several hundred
million elements. To demonstrate the robustness and effectiveness
of our method, we apply it to hundreds of models of varying com-
plexity and provide our cross-platform reference implementation in
the supplemental material.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
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1 Introduction

Triangle and quad-dominant meshes are ubiquitously used in com-
puter graphics and CAD applications to represent surfaces, either
directly, or as the control grid for higher-order parametric or sub-
division surfaces. With the introduction of T-splines [Sederberg
et al. 2003] and Dyadic T-Mesh Subdivision [Kovacs et al. 2015],
quad-dominant meshes with T-joints (T-meshes) now have similar
properties and applications of pure quadrilateral meshes, while being
more flexible and naturally supporting the flexible local refinement
that is often desired in CAD applications. Meshing surfaces is a
challenging problem, and a plethora of methods have been proposed
in the past three decades to cope with the increasing quality and scal-
ability requirements of modern applications [Owen 1998; Bommes
et al. 2013a]. Semi-regular meshes, which have uniform element
shapes and resemble regular triangle or quadrilateral grids, are of
particular interest due to their structure, which is ideal for solving
PDEs and for defining control grids of higher-order surfaces.

Meshing algorithms can be classified into local and global methods.
The former are usually simple, robust and scalable, but due to their
locality, they tend to introduce many singularities, i.e., points in the
output mesh where the connectivity deviates from that of a regu-
lar lattice, and they do not usually support alignment of the output
mesh with surface features. Global algorithms solve optimization
problems whose size depends on the entire dataset, drastically in-
creasing quality but sacrificing scalability, efficiency and simplicity
of implementation. The most popular global approaches seamlessly
parametrize the surface, regularly tessellate the parametric space,
and then lift it back to 3D.

We propose instant field-aligned meshing, a new approach based on
a local smoothing operator, which is simple to implement, robust,
controllable and efficient. Similarly to field-aligned remeshing meth-
ods [Ray et al. 2006; Bommes et al. 2009], our algorithm solves two
global problems: estimation of the alignment of the edges of the
new mesh and element placement. In contrast to these methods, our
algorithm’s main steps are local to a vertex and its neighbors, which
has important repercussions on its fundamental characteristics: we
rely on discontinuous surface fields, whose jumps are resolved on-
the-fly by our local operator. This way, we are able to sidestep the



(a) Discontinous
      orientation field

(b) Smooth visualization
      of the field in (a)

(c) Discontinous
      position field

(d) Smooth visualization
      of the field in (c)

(e) Extracted mesh

Figure 2: The types of visualizations in this paper: our method’s key
steps solve for discontinuous orientation and position fields (left).
In the remainder of the paper, we display them using more intuitive
smooth visualizations (middle) or extracted meshes (right).

computation of a global, continuous parametrization. Secondly, our
algorithm only requires a loose definition of proximity to define
neighborhoods, which allows it to process point clouds and scale
to datasets exceeding several hundred million samples by adopting
an unstructured multiresolution hierarchy. Our representation is
designed to ensure perfect alignment to an orientation field (Fig-
ure 2), and its discontinuities are finally removed during the mesh
extraction, producing a consistent triangle or quad mesh (Figure 1).

Our algorithm relies on a smoothness energy for tangent fields,
which can be chosen to be either intrinsic or extrinsic. Intrinsic
energies, which measure smoothness directly on the surface, have
been ubiquitously used by previous works, and we can similarly
employ them, producing comparable results. However, our novel
extrinsic approach leads to a natural and parameter-free alignment to
shape features, which is important especially for mechanical models.
It also naturally snaps the edges of the output mesh to sharp features
without any parameter tuning.

The running time of our algorithm scales linearly with the size of the
mesh: moderately-sized datasets (< 100k triangles) can be meshed
in less than a second, and the largest dataset in our experiments with
372 million triangles was processed in less than 10 minutes.

We exploit this efficiency and introduce a set of interactive brush
tools that can be used to control the alignment of the edges in the
final mesh, their exact position on the surface, and the location and
number of singularities. The effect of every stroke is visualized
in real time, enabling quick design iterations. With these tools,
our system combines automatic and manual meshing methods: it
allows users to control the element positions in critical regions, while
automatically tessellating the rest of the surface.

To validate our algorithm, we compare with both triangle and quadri-
lateral meshing methods, demonstrating that our method produces
meshes with higher isotropy than the state of the art, while being
simple, robust, controllable, fast and scalable to large datasets. The
price we pay for these advantages is an increased number of sin-
gularities compared to state-of-the-art remeshing algorithms that
are based on global parametrization. We provide the full source
code and binaries of our interactive reference implementation in the
supplemental material, as well as a collection of 232 meshes created
with our algorithm and the instructions to reproduce them.

2 Related work

For the sake of brevity, we restrict our survey to the most relevant
works in local and global remeshing. We refer an interested reader
to [Botsch et al. 2006b] and [Bommes et al. 2013a] for complete
surveys of triangle and quadrilateral meshing algorithms.

Surface reconstruction. Surfaces can be acquired using 3D scan-
ning or stereo reconstruction; both techniques extract surface sam-
ples in the form of range maps or point clouds. The most common
way to convert them into discrete surfaces is to compute a volumetric
distance field [Kazhdan et al. 2006] and extract the zero-isosurface
triangle mesh using Marching Cubes [Lorensen and Cline 1987].
The quality of the resulting triangulation is typically low, but the
algorithm is fast and parallelizable. Our algorithm shares many simi-
larities: it can run on large datasets, it is parallel and robust, but since
it operates directly on the data without precomputing an implicit
function, it is less resilient to noise. On the other hand, our method
can directly produce high quality triangle and quadrilateral meshes.
Spectral methods can also be used to quadrangulate point clouds via
a point-based Laplacian operator [Huang et al. 2008; Zhang et al.
2010; Ling et al. 2014], though alignment to shape features requires
an expensive optimization that does not scale to large input.

Local meshing. Local methods use topological operations, such
as edge swap, collapse and split, to improve the quality of an existing
mesh. They are widely used for both triangle [Hoppe et al. 1993;
Lindstrom and Turk 2000; Surazhsky and Gotsman 2003; Pietroni
et al. ] and quadrilateral meshes [Daniels et al. 2008; Lai et al. 2008;
Tarini et al. 2010]. Other techniques use an advancing front [Sifri
et al. 2003] or centroidal Voronoi tessellations or relaxations [Turk
1992; Surazhsky et al. 2003; Alliez et al. 2005; Yan et al. 2009].
These methods struggle with precise alignment of output mesh edges
to the surface shape, which can impact the approximation quality.
Anisotropic Voronoi tessellations [Lévy and Liu 2010] can address
some of these problems but require a costly global optimization
that is many orders of magnitude slower than our method. In all of
these methods, the position of singular points cannot be explicitly
controlled, which can lead to smoothness problems in Catmull-Clark
subdivision surfaces [Catmull and Clark 1978]; special methods
have been developed to interactively move and collapse singular-
ities [Peng et al. 2011] to deal with this problem. Our approach
shares the scalability and robustness of local methods, while also
providing edge alignment to shape features as well as control over
the placement of singularities.

Sketch-based remeshing. Sketch-based methods enable interac-
tive design of guiding vector fields [Zhang et al. 2006] to adjust both
the shape and number of quads used; they are ideal for artists that
desire complete control over the generated results [Takayama et al.
2013; Campen and Kobbelt 2014]. Our method combines some of
the tools proposed by these works, allowing to restrict their usage to
the regions where precise control is important, while relying on our
optimization to automatically tessellate the rest of the surface.

Global parametrization. Global methods solve a global optimiza-
tion that involves the entire dataset, providing a direct way to control
the meshing quality and the singularities at the cost of algorithmic
and implementation simplicity. They have been introduced e.g. in
[Alliez et al. 2002; Gu et al. 2002; Khodakovsky et al. 2003; Mari-
nov and Kobbelt 2006], where the mesh is parametrized to the plane,
and a regular tessellation on the plane is lifted to the surface. Precise
control of the edge alignment is important for quad meshing and led
to the development of parametrization strategies that align with a
direction field. Many variants of these methods have been proposed
for triangle [Nieser et al. 2012] and quadrilateral meshing [Ray et al.
2006; Kälberer et al. 2007; Bommes et al. 2009; Ebke et al. 2014].

The design of the guiding field is an interesting and difficult sub-
problem on its own, introduced in [Hertzmann and Zorin 2000]
and extensively studied in the past decade [Palacios and Zhang
2007; Ray et al. 2008; Lai et al. 2010; Crane et al. 2010; Knöppel
et al. 2013; Panozzo et al. 2014; Diamanti et al. 2014; Jiang et al.
2015]. Global parametrization methods have also been extended to
rangemaps [Pietroni et al. 2011] and point clouds [Li et al. 2011].



The majority of the global parametrization methods strives to com-
pute a parametrization whose gradient is aligned with a set of di-
rections that is not integrable, thus requiring complex numerical
algorithms to enforce local injectivity and/or low distortion in the
parametrization [Bommes et al. 2013b; Myles and Zorin 2013; Levi
and Zorin 2014; Myles et al. 2014]. Integrable fields can be designed
by minimizing a nonlinear energy [Diamanti et al. 2015], but this
approach is not interactive and does not scale to large datasets. In
addition, the extraction of a mesh from a global parametrization
is a difficult task that requires the handling of many special cases
[Ebke et al. 2013]. The major advantage of these methods is that
they create pure quadrilateral meshes with precise control over edge
alignment and singularity placement, though this comes at a signifi-
cant cost in high implementation complexity and lack of scalability
to large datasets due to the need to compute a globally consistent
parametrization over the entire surface. Our algorithm penalizes
the distortion more, introducing extra singularities to increase the
uniformity of the elements, and to improve their alignment.

A radically different approach was proposed by Ray et al. [2006],
who compute a pair of periodic functions without surface cuts, while
introducing additional singularities to improve element quality. Our
approach is related to this method, since it introduces additional sin-
gularities and does not require cutting the surface, but there are four
major differences: instead of computing per-triangle parametriza-
tions from smooth global periodic functions, we directly optimize
discontinuous surface fields; our method offers precise control over
both orientation and position of edges; if no constraints are specified,
edges naturally snap to sharp features, and our simple algorithm
optimizes the underlying energy in a way that scales linearly with
the size of the input.

Integration. Quad-dominant meshes, i.e., meshes made predomi-
nantly of quadrilaterals but with a few triangles and pentagons, are
commonly used for animation purposes, where they are preferred
due to their flexibility in handling density changes [DeRose et al.
1998]. They are easily converted into a pure quadrilateral mesh with
one step of Catmull-Clark subdivision [Catmull and Clark 1978].

Quad-dominant meshes can be created by integrating curvature
lines [Alliez et al. 2003; Marinov and Kobbelt 2004], and usually
contain a large number of singularities. A very interesting special
case of quad-dominant meshes are T-meshes, where T-junctions
allow a sharp transition in density without breaking the edge flow
[Sederberg et al. 2003]. Global parametrization methods have been
proposed to automatically create such meshes [Myles et al. 2010],
but they share the limitations of global methods discussed earlier.
Our algorithm creates quad-dominant meshes, and our singularities
achieve a similar effect to T-junctions. Our user interface allows the
user to interactively move singularities and collapse them, providing
a high degree of control over the final result.

3 Method

Our algorithm combines ideas from local and global meshing meth-
ods: we compute a mesh that is globally aligned with a direction field
using local orientation- and position-field smoothing operators. The
mesh is then extracted from the fields and optionally post-processed.

Orientation field. In the first step (Section 3.2), we compute an
N -RoSy field [Ray et al. 2008], i.e., a set of directions on the input
surface to which the edges of the output mesh should align. The
directions are unique up to a symmetry group that depends on the
type of the generated mesh. For example, for quadrilateral meshes,
we define a cross at every point of the surface, which is invariant
to rotations by 90◦. Differently from existing N -RoSy field de-
sign methods, which interpolate a (sparse) set of constraints, our

Figure 3: Our method is robust to low quality or non-manifold
input. Left: a challenging input mesh with 545 non-manifold vertices,
particularly around the left eye region. Right: our method cannot
mesh the eye but degrades gracefully. Global methods that assume
manifold input [Ray et al. 2006; Bommes et al. 2009] cannot process
such data—the implementations we tried simply crashed.

approach is completely automatic and parameter-free: by measuring
smoothness extrinsically, we obtain natural alignment to surface fea-
tures. Note that this is different from existing field-aligned methods
that align to curvature directions using thresholded hard constraints
[Bommes et al. 2009] or global smooth constraints based on an
interpolation parameter t [Knöppel et al. 2013]. If desired, such
constraints are also supported by our technique, but the main differ-
ence is that we achieve parameter-free alignment to features even
when no constraints are specified. If our extrinsic metric is replaced
with the classically used intrinsic metric, our algorithm becomes
an alternative way of minimizing the N -RoSy smoothness energies
proposed in [Ray et al. 2008; Bommes et al. 2009].

Position field. The second step (Section 3.3) computes a local,
per-vertex (u, v)-parameterization, which is discontinuous over
edges (a direct visualization is shown in Figure 2(c)). We opti-
mize the smoothness of this field under a quotient space of integer
translations. The integer coordinate values in this local parameteri-
zation correspond to the vertices of the final mesh, and its gradient
is exactly aligned with the previously computed orientation field.
The field’s discontinuous nature averts the need for a costly global
optimization to assign globally consistent (u, v) coordinates. This
is similar in spirit to the globally smooth periodic functions of Ray
et al. [2006]; however, our formulation admits both intrinsic and
extrinsic smoothness energies while being considerably faster and
simpler to optimize. Similarly to the previous step, we prefer to
use an extrinsic approach to smooth the parameterization, leading to
natural snapping of the resulting mesh edges to sharp features.

Unified algorithm. The two steps above are deeply related, since
they both minimize a smoothness energy defined up to local sym-
metries: integer rotations in the case of the orientation field and
integer translations for the position field. They both employ nonlin-
ear Gauss-Seidel (GS) iterations with a nested brute-force search,
which solves the nonlinear symmetry-related part of the energy in a
localized fashion. Both steps easily get stuck in bad local minima
(Figure 8), which we avoid by either using randomization (Section
3.4) or a multiresolution hierarchy (Section 3.5). Both approaches
can work with graphs extracted from a variety of geometric data
formats, such as meshes or point clouds with nearest neighbor con-
nectivity. Non-manifold input is handled gracefully: an example is
shown in Figure 3, where defects in an otherwise clean mesh cause
global methods to fail, while our local method can still produce high
quality output away from the defects.

It is possible to detect special points on the surface called singu-
larities by analyzing the integer variables defined on edges; this
relationship has been studied in detail for the case of orientation
fields [Ray et al. 2008]. For position fields, the integer variables
induce a different kind of singularity that controls the tessellation
density of the output mesh, similarly to [Ray et al. 2006]. In Sec-
tion 3.6, we discuss this concept and show how position singularities
can be moved or even eliminated by collapsing opposite-facing pairs.



3.1 Input and graph representation

We represent the input surface as a graph G = (V, E), where each
vertex i ∈ V is associated with a position vi ∈ R3 and a normal
direction ni. The set of edges, E ⊂ V × V , stores the neighborhood
relations, which are defined in various ways depending on the input:
for point clouds, (i, j) ∈ E if point vj is in the set of the K-nearest
neighbors of point vi, and for triangle meshes it corresponds to
the usual mesh edges. We denote the neighborhood of vertex i by
N (i) = {j ∈ V | (i, j) ∈ E}. Every pair of neighboring vertices
i, j has an associated weight wij . The weights can be chosen as
uniform (wij = 1) or geometry-dependent [Pinkall and Polthier
1993; Belkin et al. 2009] to better adapt to irregular inputs.

Our iterative algorithm minimizes an energy defined on the vertices
of G using local iterations that resemble the Gauss-Seidel method.
The idea can be illustrated by recalling explicit Laplacian smoothing
[Taubin 1995], which iteratively smooths the vertex coordinates by
local iterations of the form:

vi ←
1∑

j∈N (i) wij

∑
j∈N (i)

wij vj . (1)

Our method relies on a similar approach to compute smooth (i.e.
as constant as possible) orientation and position fields that are then
used to create the final output mesh. The challenge is that both fields
are subject to certain symmetry conditions that need to be taken into
account in Eq. (1). We now explain both optimization steps in turn.

3.2 Orientation field optimization

The first step computes an so-RoSy field [Ray et al. 2008], which
we call orientation field, since it guides the alignment of the edges
in the final mesh. An so-RoSy field satisfies a rotational symmetry
condition of degree so, which means that every vertex i ∈ V is
associated with a set of so unit-length, evenly spaced tangent vectors.
A value of so = 1 reduces to traditional tangent vector fields, so =
4 yields a cross field and so = 6 yields a hex-directional field
applicable for triangular and hexagonal meshing [Nieser et al. 2012].

Symmetry group. We denote an integer rotation of a representa-
tive vector o about the fixed normal n asRso(o,n, k), and the set
of all integer rotations of o asRso(o,n):

Rso(o,n, k) := rot

(
n, k

2π

so

)
o, k ∈ Z and

Rso(o,n) := {Rso(o,n, 0), . . . ,Rso(o,n, so − 1)} ,

where rot(n, θ) is the rotation matrix by angle θ about n. The
so-RoSy field O consists of Rso(o1,n1), . . . ,Rso(o|V|,n|V|),
where oi ∈ R3 is a representative direction asso-
ciated with every vertex i ∈ V . Note that, being
an element of the tangent space of vertex vi, the
representative direction oi could also be defined
as a two-dimensional quantity in local coordi-
nates. To describe both intrinsic and extrinsic
smoothness energies in a unified manner, we pre-
fer to work with a (redundant) representation as vectors inR3.

Intrinsic smoothness. We base our construction on the energy
used in [Ray et al. 2008; Bommes et al. 2009], which we briefly
summarize in the following. Ray et al. [2008] propose to measure
the smoothness of an N -RoSy field as the angle difference between
adjacent vectors after unfolding them to a common plane. The
ambiguity induced by the rotational symmetry is explicitly encoded
using integer variables kij .

orientation field – intrinsic

orientation field – extrinsic

Figure 4: Measuring smoothness of orientation RoSy fields intrinsi-
cally (top) and extrinsically (bottom). Neighboring vertices vi and
vj have tangent planes with normals ni,nj , respectively. To mea-
sure field smoothness intrinsically, the tangent plane of vertex vj is
first transformed by the rotation rot(nj × ni, ](nj ,ni)), so that it
becomes parallel to the tangent plane of vertex vi, and then the dif-
ference between the associated RoSy is measured in the common 2D
space by finding the integer rotation of the representative vector of j
that has the smallest angle with oi. Extrinsic smoothness measure
forgoes the transformation to a common 2D space and measures
the difference directly in 3D, finding the angle-minimizing integer
rotations for both RoSy representative vectors.

Let oji := rot(nj × ni, ](nj ,ni))oj be the representative vector
at vertex j, rotated into the tangent plane of vertex i. The smoothness
is measured as:

E(O,k) :=
∑
i∈V

∑
j∈N (i)

](oi, Rso(oji,ni, kij))
2, (2)

where kij are additional integer variables defined for each pair of
neighboring vertices (i, j) ∈ E , and k ∈ R2|E| is a vector stacking
the kij values. Bommes et al. [2009] proposed to minimize this
smoothness energy globally, relying on a combination of Gauss-
Seidel iterations, conjugate gradients and sparse Cholesky solvers
with a greedy rounding strategy. Knöppel et al. [2013] later proposed
a convexN -RoSy smoothness energy, which we discuss in Section 4.

Local iteration. Our approach to minimizing the same energy
(Eq. (2)) is much simpler and gives comparable results. We adapt
the Gauss-Seidel iteration from Eq. (1):

oi ←
∑

j∈N (i)

wij Rso(oji,ni, kij), oi ← oi/‖oi‖,

where we have replaced the division by the sum of weights by a
normalization. The most important change is that we search for the
optimal integer variables kij locally whenever the vertex i is visited
by the iteration. This is a much simpler problem that can be solved
by a brute-force search over the (tiny) symmetry space:

kij := arg min
0≤k<so

](oi, Rso(oji,ni, k)).



In our experiments, we observe considerable improvements in con-
vergence when recomputing the integer variables even more fre-
quently, i.e., after visiting each edge:

o′i ← wij1 Rso(oj1i,ni, kij1), oi ← o′i/‖o′i‖ (3)

o′i ← o′i + wij2 Rso(oj2i,ni, kij2), oi ← o′i/‖o′i‖
...

where j1, j2, . . . ∈ N (i).

The downside of such a purely intrinsic formulation is that it is
not aware of the embedding of the surface, which is an important
requirement for high-quality remeshing. To fill this gap, Bommes
et al. [2009] find the regions where the curvature is high, and then
force the field to align to the principal curvature directions in those
regions. A curvature threshold needs to be manually tweaked to
determine which areas are constrained and which remain free. In
[Knöppel et al. 2013], the hard constraints were replaced by soft
constraints over the entire surface, which tend to align the field to the
estimated curvature directions. The hard threshold is thus replaced
by another parameter that controls the weight of the soft constraints.

Extrinsic smoothness. Curvature alignment is often desirable
because it tends to lower the approximation error, but it is important
to realize that the reverse implication is not generally true: good
approximation does not mean that the parameterization must be
aligned to curvature directions. We propose a parameter-free alterna-
tive to the above process, which entirely sidesteps curvature-related
heuristics. Our extrinsic energy directly optimizes for geometric
approximation error by computing distances in the embedding space,
and we find that this often causes it to align with shape features. It is,
however, not forced to do so and can also consider other orientations.

The main difference compared to Eq. (2) is that the neighboring
orientation oj is never rotated into the tangent plane of vi; instead,
angle differences are computed directly in the 3D ambient space:

Ee(O, k) :=
∑
i∈V

∑
j∈N (i)

] (Rso(oi,ni, kij),Rso(oj ,nj , kji))
2. (4)

In this formulation, both field representatives of the adjacent vertices
i, j have integer rotations, expressed by kij and kji, respectively.

Similarly to the intrinsic case, we minimize this energy by local
iterations akin to Eq. (3), except that each time we project the up-
dated vector oi onto the tangent plane of vi before normalizing it,
and, more importantly, the brute-force search now takes place on a
symmetry space of s2o pairs of rotations:

(kij , kji) := arg min
0≤k,l<so

](Rso(oi,ni, k), Rso(oj ,nj , l))
2.

Refer to Figure 4 for an illustration of the intrinsic and extrinsic
optimization procedures.

The fields visualized on the Twisted Cube in Figure 5 illustrate this
behavior: not a single constraint or parameter was provided to the
optimization, yet the algorithm was able to converge to a solution
that is perfectly aligned with the cube’s corners and curving edges.

3.3 Position field optimization

Given an orientation so-RoSy field O (computed with our method
or with other field design algorithms), we now want to compute a
local parameterization whose gradient is aligned with O. Global
parameterization algorithms (e.g. [Bommes et al. 2009]) compute a
single, consistent parameterization whose gradient matches the ori-
entation field in a least-squares sense; this procedure requires cutting

(a) Intrinsic smoothness energy (b) Our extrinsic smoothness energy

Figure 5: (a) Approaches based on intrinsic smoothness energies
for N -RoSy fields [Ray et al. 2008; Bommes et al. 2009] by default
compute a smooth field that is not aligned to geometric features; they
require additional constraints to integrate this “extrinsic knowledge”
into the optimization. (b) Our new extrinsic energy achieves the
same effect naturally even when no constraints are specified.

the surface, so that it becomes a topological disk with all the field
singularities located on its boundary. This is complex to implement,
not scalable to large datasets, since it relies on global mixed-integer
optimization, and it is very sensitive to topological noise. On the
other hand, such approach provides an ideal framework for semi-
regular meshing: a regular grid of triangles or quadrilaterals can be
placed in (u, v)-space and lifted onto the mesh using this parame-
terization. The seamless property of the parameterization ensures
that the cuts are not visible. Cuts can be avoided by representing the
u and v coordinates using periodic functions [Ray et al. 2006]: a
consistent parametrization can then be locally extracted away from
singularities and used to regularly remesh the surface. For the pur-
pose of isotropic meshing, this approach has the major advantage
of being able to introduce additional singularities that keep the area
distortion low. Similarly to the previous case, an involved nonlinear
optimization has to be solved over the entire mesh, preventing its
use on large datasets.

Both approaches above rely on an optimization that computes a
pair of parametrization functions whose gradients are similar, in a
least-squares sense, to the given orientation field. We instead tackle
the problem in a purely local way: instead of finding continuous
parametrization functions over the entire mesh, we compute a local
parameterization for each vertex and define a smoothness energy that,
similarly to the orientation field optimization, measures the similarity
between two local parameterizations up to integer translations. By
construction, the parametrizations will be exactly aligned with the
orientation field and thus discontinuous on edges. For visualization
purposes only, we interpolate the discontinuous functions in a shader,
which we use in all our renderings (Figure 2).

Symmetry group: Let us denote by ρ a user-defined, global scal-
ing factor that specifies the desired edge length in the output mesh.
We use an unusual, but simple and efficient encoding for the local
parameterization of a vertex i: we fix the parameterization’s gradient
to be precisely aligned with the orientation field oi, strongly reduc-
ing the remaining degrees of freedom. The local parameterization
of vertex i is encoded as a 2D point in its tangent plane that refers
to the closest lattice point; this uniquely defines a parameterization
over the entire tangent plane, up to translations by integer multiples
of ρ (Figure 6).

When these local parameterizations are defined over the entire sur-
face, we have a 2D point value for each vertex, which is defined
up to a positional symmetry (PoSy) condition. We call these 2D
valued fields position fields. Intuitively, they capture the fractional
coordinates of the parametric position of each vertex. To be pre-
cise, they span a space that is locally invariant under translations
by integer multiples of ρ along sp symmetry axes and rotations by



position field – intrinsic

position field – extrinsic

Figure 6: Illustration of the two position field smoothness energies:
in the intrinsic case, all quantities associated with vj are rotated
into the tangent plane of vi; afterwards, the closest representative
position to pi is determined. The rotation is omitted in the extrinsic
case, and both positions are translated. The final representative
positions are drawn in a darker color.

integer multiples of 2π/sp, where sp = mso, m ∈ N. As before,
we prefer to work with three-dimensional quantities for a unified
discussion of the intrinsic and extrinsic case. For this, we identify
each tangential 2D position field value with a corresponding position
in the 3D tangent plane, i.e., (ui, vi) 7→ vi + uiai + vibi, where
(ai,bi) is a basis of the tangent space at vi. In Figure 2 (c), we
visualize a raw field by mapping the 3D positions to RGB colors.

We define an integer translation of a position p ∈ R3 and the set of
all its possible integer translations as

Tsp(p,n,o, t) := p + ρ

sp/2−1∑
k=0

tkRsp(o,n, k) and

Tsp(p,n,o) :=
{
Tsp(p,n,o, t)

∣∣∣ t ∈ Zsp/2
}
,

respectively. The position field P is then given by the set
of tangential lattices of the vertices, i.e.
Tsp(p1,n1,o1), . . . , Tsp(p|V|,n|V|,o|V|),
where pi ∈ R3 is a representative position
associated with vertex i. We assume
that sp is even; the sum over sp/2 terms
above ensures that each translation axis is
considered once (but in both directions).
Similar to the orientation field optimization,
we now define a smoothness energy that is invariant to the integer
translation symmetry condition.

We define pji as the representative position of vertex j after a
rotation into the tangent plane of vi:

pji := rot (nj × ni, ](nj ,ni)) (pj − qij) + qij ,

where qij is a point that lies on the intersection of the two tangent
planes (its computation is discussed in the appendix). We can then
measure the intrinsic smoothness with the following energy:

E(P, t) :=
∑
i∈V

∑
j∈N (i)

‖pi − Tsp(pji,ni,oi, tij)‖22 , (5)

(a) Intrinsic smoothness energy (b) Our extrinsic smoothness energy

Figure 7: Our extrinsic energy naturally snaps the integer isolines
to sharp features (b), while the intrinsic version is unaware of them.

which penalizes disagreements in the representative parametric po-
sitions, where the integer variables tij ∈ Zsp/2, defined per edge
(i, j) ∈ E , remove ambiguities due to the underlying symmetry.

By definition, this energy is intrinsic and thus unaware of the ge-
ometric embedding. Hence, the integer isolines of the resulting
parameterization are unlikely to snap to the shape’s features (see
Figure 7(a)). To remedy this, one could first locate the features and
then explicitly add constraints that force the isolines to pass there
[Bommes et al. 2009]. Instead, similarly to our solution for orien-
tation fields, we modify our energy to make it extrinsic, obtaining
natural snapping of the integer lines to geometric features:

Ee(P, t) :=∑
i∈V

∑
j∈N (i)

∥∥Tsp(pi,ni,oi, tij)− Tsp(pj ,nj ,oj , tji)
∥∥2
2
, (6)

where tij , tji ∈ Zsp/2 are sp/2-dimensional integer variables. The
bottom part of Figure 6 illustrates this change. Note how the lowest
energy configuration is reached when both vertices lie exactly on
the intersection between the tangent planes. This subtle change has
a major impact on the results, as demonstrated in Figure 7.

Our minimization strategy is similar to the algorithm used for ori-
entation fields: we iteratively visit each edge, finding the integer
variables locally via brute-force search each time:

p′i ← wij1 Tsp(pj1i,ni,oi, tij1), pi ← p′i/
∑1

k=1 wijk

p′i ← p′i + wij2 Tsp(pj2i,ni,oi, tij2), pi ← p′i/
∑2

k=1 wijk

...
...

pi ← round(ni,oi,pi,vi) (7)

The final lattice rounding operation performs an integer translation
to determine the position representative that is the closest to the
vertex position vi (a definition is provided in the appendix).

The exhaustive search for the optimal position integer variables tij
may initially appear daunting, since the space of possible integer
translations is infinitely large. We would need to search two regular
lattices, living in different tangent spaces, for the two points with
the smallest pairwise distance. Formally, this problem is equivalent
to the shortest vector problem (SVP) in an sp-dimensional lattice,
which does not have an efficient solution [Micciancio 2001].

However, our problem is more specific than the SVP, because we
are only interested in points that are also close to vi and vj and
their corresponding tangent planes, which permits a very localized
search. In the appendix, we describe a simple computation of an
intermediate position qij that minimizes the distance to vi and
vj subject to being constrained to lie in both tangent planes (see
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Figure 8: On its own, the basic nonlinear Gauss-Seidel iteration introduced in Section 3.2 can locally smooth the orientation and position
fields, though it soon gets stuck in local minima that are far from the desired solution. By combining the iteration with a simple multiresolution
hierarchy, this problem is avoided.

Figure 6, where qij is highlighted in orange). With this position in
hand, we again search for the best pair of integer jumps

(tij , tji) := arg min
t∈Qij , m∈Qji

‖Tsp(pi,ni,oi, t)−Tsp(pj ,nj ,oj ,m)‖,

where the sets Qij and Qji only contain translations that yield
positions near qij . In our experiments, we found it sufficient to only
consider the sp immediate neighbors of qij on each lattice, and thus
we search over a total of s2p possible combinations.

3.4 Randomized GS

As noted before, the GS iterations tend to get stuck in local minima.
An extremely simple approach to avoid this is to traverse the graph G
using a different random permutation of the vertices in each iteration.
While this does not address any of the other issues of the GS method
with regards to slow convergence, it does lead to a particularly short
and instructive algorithm. We provide a script in the supplemental
material, which implements the field smoothing steps in 100 lines
of Python code. However, all of the results shown in this paper are
generated using the approach described in the next section.

3.5 Multiresolution hierarchy

We use a simple multiresolution hierarchy to improve convergence
and to allow the algorithm to move out of local minima. Starting with
the full-resolution input graph G, we perform approximately log2 |V|
coarsening steps to create the hierarchy by collapsing adjacent ver-
tices until the entire graph is reduced to a single “super-vertex” per
connected component.

Traditional multi-grid approaches on unstructured triangle mesh use
mesh decimation [Aksoylu et al. 2005] to build the hierarchy levels.
However, similarly to [Botsch et al. 2006a], we do not require the
levels of the hierarchy to be a consistent triangulation, and we can
thus use a much simpler clustering strategy. In particular, we use the
following scheme:

1. Preprocessing: assign a dual area Ai to each vertex i (uniform
Ai = 1, or Voronoi area when the input is a mesh).

2. Repeat the following phases until a fixed point is reached:

(a) For each pair of neighboring vertices i, j, assign a score
Sij := 〈ni,nj〉min (Ai/Aj , Aj/Ai) .

(b) Traverse Sij in decreasing order and collapse vertices i
and j into a new vertex v if neither has been involved in
a collapse operation thus far. The new vertex is assigned
an area of Av = Ai + Aj , and its other properties are
given by area-weighted averages of the vertices that are
merged together.

Each iteration reduces the number of vertices approximately by half.
Figure 9 shows an illustration of the progressively coarser color-
coded hierarchy levels in the Botijo dataset. We keep track of the

Depth 3 Depth 5 Depth 7 Depth 9 Depth 11
Figure 9: Our multiresolution hierarchy is created by merging
adjacent vertices in the input graph in approximately log2 |V| phases
until only a single “super-vertex“ is left per connected component.

relations between hierarchy levels to be able to propagate position
and orientation fields up and down between different resolutions.
Figure 8 shows the impact of the hierarchy on convergence. In
all our results, including the right side of Figure 8, we run six GS
iterations per level, beginning at the coarsest version of the graph
and finishing at the original input mesh. The initial orientation and
position fields are initialized using uniformly distributed random
tangential vectors and positions within the bounding box of the mesh.
After completing each level, we simply copy the solution to the next
finer level. The inset in Figure 20 shows the decreasing smoothness
energy during this process.

We experimented with different methods for assigning normals to
vertices in the finest resolution graph: averaging the angle-weighted
normals of adjacent faces produces generally good results but over-
smoothes normals in crease regions, which reduces alignment to
hard features (e.g. in CAD models). We flag crease edges based
a dihedral angle threshold. Any vertex that is adjacent to a crease
edge is (arbitrarily) assigned the normal of an adjacent face rather
than their average.

Intuitively, the space of possible solutions at the finest level is ex-
ceedingly large, and our energy functions E are non-convex and
contain many local minima. On the other hand, a coarse graph
with just a few vertices has a low-dimensional solution space whose
global minimum is easier to find for a local, iterative method. Our
algorithm is therefore based on the hypothesis that the global min-
ima of two adjacent hierarchy levels are closely related, so that a
converged solution at one level is an excellent starting point for opti-
mization of a finer graph after one level of refinement. We currently
offer no formal proof or guarantees of this property and demonstrate
the success of our method in practical experiments.

3.6 Singularities

The integer variables kij and tij are a byproduct of our local itera-
tions. They represent the transformations required to locally factor
out the symmetries of the two fields: integer rotations for orienta-
tion fields and integer translations for position fields. Consider any
simple cycle around a vertex in G: usually, the composition of all
transformations over the cycle is an identity transformation. If this is



Figure 10: Position singularities such as the yellow markers (left)
naturally arise in our position field optimization; they allow our
method to adapt to the available space and create T-junctions in the
output mesh to maximize isotropy. The singularities create pentagons
or triangles in the output mesh (middle), which can be converted
into pairs of valence 3 and 5 vertices after a subdivision step (right).

not the case, the cycle contains a singularity of the respective field,
which introduces an irregularity in the output mesh.

Orientation field singularities. In an orientation field, the defini-
tion of a singularity is equivalent (up to being defined on a general
graph) to the familiar notion of singularity of discreteN -RoSy fields
on piecewise linear meshes [Ray et al. 2008]. An N -RoSy singu-
larity corresponds to an irregular vertex in the final meshing, i.e. a
vertex with more or less than four (in quad meshes) or six (in triangle
meshes) incident edges.

Position field singularities. In a position field, a singularity cor-
responds to the residual integer translation over a cycle, and it is
defined only if no orientation singularity is present. Position field
singularities cannot affect the orientation of the parametrization,
which is entirely controlled by the orientation field. Therefore, they
intuitively prescribe insertions or removals of a parametric isoline in
the region inside the cycle. In analogy to the orientation singularities,
a position singularity locally disrupts the regularity of the output
mesh (Figure 10): in triangle meshes, it simply corresponds to an
irregular vertex, and in quad meshes, it can be equivalently meshed
as a T-junction or a polygonal element (a triangle or a pentagon).
A position singularity splits or merges two parallel edge loops (i.e.
sequences of consecutive edges that make no turn), preserving their
alignment. These singularities are used by our algorithm to enforce
the uniformity of elements without deviating from the prescribed ori-
entation field, in contrast to global parametrization methods, which
avoid these singularities by sacrificing isotropy and field alignment.
It is not surprising that the number of position singularities depends
on the resolution of the output mesh.

As an optional post-process step, we convert our quad-dominant
meshes into pure quad meshes with a step of Catmull-Clark subdivi-
sion; each position singularity becomes a pair of irregular vertices
of valence 3 and 5 in the final mesh (Figure 10).

Detecting singularities. When the input graph G is a triangle
mesh, it is simple to detect orientation and position singularities
using the already computed integer variables by adding kij or tij
over the edges of each triangle and checking whether the result is a
multiple of so or non-zero, respectively. We use this simple defini-
tion in the next section to implement editing operations that move
and collapse singularities. Detecting and manipulating singularities
for point clouds is more involved; we leave this as a future work.

3.7 Editing operations

Our method supports intuitive editing operations to influence ori-
entation and position values via constraints that are passed to the
corresponding optimization stages. Another type of editing opera-
tion makes targeted modifications to the integer variables kij and tij
to move and collapse singularities. The supplemental video contains
demonstrations of all tools in action.

Orientation brush strokes

Figure 11: The orientation brush forces the orientation field to align
with the direction of a stroke drawn by the user. This is an intuitive
way of influencing the edge flow and placement of singularities.

Figure 12: The edge brush forces an iso-parameter line of the
position field to pass along a stroke drawn by the user. This causes
a corresponding chain of edges to be created in the output mesh.

Orientation and position constraints. The orientation (Fig-
ure 11) and position brushes (Figure 12) enforce field constraints
during the GS iteration: when computing an orientation field value at
vertex i, oi is updated to a value that is linearly interpolated between
the originally computed result and a constraint, and then projected
onto the tangent space and normalized; for this, we search the sym-
metry space once more and interpolate the most similar directions.
The interpolation weight determines the strength of the constraint.
Constraints are also propagated up in the multiresolution hierarchy
and interpolated whenever two vertices with constraints are merged.

The position brush works similarly: we constrain one of two possible
dimensions by projecting the computed pi onto the plane spanned by
the stroke direction and the normal, and adjust it to an interpolated
value between its current position and the projection. When process-
ing meshes with boundaries, our implementation can automatically
assign matching edge brush constraints so that boundary edges in
the output mesh follow the input.

Singularity attractor. The singularity attractor (Figure 13) en-
ables interactive movement of both orientation and position singu-
larities. We currently only provide this operation for triangle mesh



Figure 13: Example application of the singularity attractor to move
and collapse a pair of position singularities of opposite sign.

inputs, as it requires a decomposition of the input graph into simple
cycles. When using this operation, the discrete search over symme-
try spaces is deactivated and the integer variables are globally frozen
to their last computed value. The optimization continues, but only
the fractional part is optimized from then on. Since no other brush
strokes can be applied afterwards, this step should come last in any
meshing workflow.

Recall that we can detect the presence of singularities simply by
adding the associated integer values over the edges of a triangle in
the input mesh. The operation implemented by the attractor then
moves a singularity of either type from a triangle T1 to an adjacent
triangle T2 by a suitable modification to the rotation index or integer
shifts associated with their shared edge; longer movements are done
by repeating this operation. Between each step, the GS iteration
is executed at the finest hierarchy level to update the continuous
part of the solution, and the singularity moves accordingly. We ob-
served that stretching the computed field in this way can occasionally
introduce additional singularities.

3.8 Mesh extraction

Existing mesh extraction algorithms [Ebke et al. 2013] are spe-
cialized to surfaces and difficult to extend to our general graph
representation. In this section, we propose a simple and efficient
way of turning the computed fields into a mesh, which works for 4-
and 6-PoSy fields and can handle point clouds. We assume that the
input mesh resolution is denser than the desired output resolution
(otherwise, we appropriately subdivide the input where necessary).

Recall that each vertex i in the input graph is associated with a three-
dimensional representative position pi. Due to the last rounding step
in the position optimization (Eq. (7)), this is the closest representative
position to the vertex vi. This 3D point can also be understood as
the approximate position of a vertex to be placed into the output
mesh. Every edge (i, j) ∈ E of the input mesh is associated with an
sp/2-dimensional vector of integer values tij , which expresses how
many integer translations are necessary to bring vertices pi and pj

as close together as possible.

Many of these integer values tij are zero in the intrinsic case, or
opposite in sign, i.e. tij = −tji, in the extrinsic case, which means
that both vertices reference the same position up to small differ-
ences in the fractional part. Among the nonzero integer variables,
unit vector-valued tij are also of particular interest: they state that
the representative positions pi and pj differ by a single integer
translation, i.e. they approximate an edge of the output mesh.

Figure 14 shows a visualization of the information conveyed by
the integer variables. Each variable with tij =−tji is drawn as a
blue edge between the associated representative positions pi and pj ,
whereas unit vector-valued tij are shown as red edges. This visual-
ization closely resembles the desired output mesh, where vertices
appear as small blue clusters connected by groups of red edges.

To extract the mesh, we begin by creating an undirected graph
G′ = (V ′, E ′), where the set of vertices V ′ is the set of representative

(a) Input graph (b) Processed graph

Figure 14: The position field and integer jumps generated by the
second stage of our optimization pipeline are already in a form that
is very close to the final output mesh: (a) shows a visualization of
the position field, where zero integer jumps are connected by a blue
line, and red lines indicate unit jumps. We collapse clusters of blue
links into the vertices of the output mesh, shown in (b), and extract
polygons from the resulting graph.

positions p1, . . . ,p|V| of the input graph, and two vertices (i, j) are
connected if the associated integer variable is an integer unit vector
(this corresponds to the red subgraph in Figure 14(a)). Let C denote
the set of all edges (i, j) with tij = −tji (these are the blue edges).
Our algorithm then takes edges from C and collapses the associated
vertices in G′ until C is empty.

Even such a simple criterion can already produce a passable output
graph, though it collapses vertices too eagerly near orientation and
position singularities due to the conflicting information recorded in
the integer variables at such positions. We avoid this behavior by
visiting the edges (i, j) ∈ C in increasing order of distance between
their representative positions ‖pi − pj‖ and only collapsing the
associated vertices in G′ if they are not already connected by an edge
in G′: an already existing edge indicates a conflict among integer
variables regarding whether or not the vertices should be merged,
and we conservatively choose to keep them. The intuition behind
this simple heuristic is that short edges represent a high degree of
confidence that two vertices in G′ in fact correspond to the same
vertex of the output mesh. By visiting them in this order, we can
postpone conflicting merge operations until the very end, at which
point they can easily be identified as such and ignored.

Following the collapse operations, each remaining vertex in G′ is
the result of merging multiple representative positions from the
input graph. To keep notation simple, let us focus on one vertex
v′k ∈ V ′ which corresponds to a cluster of representative positions
pi1 , . . . ,pin ∈ V . We assign the output vertex a position value and
a normal direction as a weighted combination of the representative
positions and normals of the input mesh, respectively:

(v′k,n
′
k)← 1∑n

l αil

n∑
l=1

αil(pil ,nil),

where αi := exp
(
− β−2‖pi − vi‖2

)
and β = ρ/3 in our exper-

iments. The rationale of this expression is to give more weight to
vertices in the input mesh that are close to their associated repre-
sentative position. Occasionally, the graph extraction step produces
a merged vertex with very low n, i.e., few corresponding vertices
in the input mesh, which leads to spurious faces in the output. We
remove them by discarding vertices with n < n̄/10, where n̄ is the
average value of n over all vertices in G′.

The processed graph G′ describes both position and adjacency infor-
mation of the output mesh. A final step entails detecting the actual



Figure 15: Screen captures of a point cloud meshing session con-
ducted using our interactive implementation

faces, which can be implemented using a simple greedy algorithm
that walks along oriented edges and removes them from the graph.
This can sometimes produce non-manifold output in tricky situations
such as extremely coarse meshing of very detailed or high-genus
input. Note that in such situations, existing global methods might
also introduce folds that either cause severe distortion or holes. If
manifold output is required, we simply drop offending edges or
vertices, producing similar artifacts.

4 Results

We implemented our algorithm in C++, relying on the language’s
template mechanism to easily instantiate our optimization kernels
for different symmetry groups. We use the Eigen library for linear
algebra operations, and Intel Threading Building Blocks to facilitate
parallelization of all components. We follow a standard approach
to parallelize the nonlinear Gauss-Seidel iterations to achieve inter-
active performance even on larger models: a greedy graph coloring
preprocess produces a graph labeling using approximately 5-8 colors.
Vertices of the same color share no edges and can be safely visited in
a sequence of (independent) parallel phases. We also experimented
with Jacobi-style iterations that require no such provisions, but pre-
ferred the better convergence of our modified Gauss-Seidel method.
Our algorithm requires no special numerical precautions and works
well in single precision arithmetic.

The extraction phase is also executed in parallel; to efficiently merge
clusters of vertices of the input mesh into the vertices of the output
mesh, worker threads pop edges (i, j) to be merged from a par-
allel priority queue. The merging operation itself is implemented
using a lock-free disjoint set data structure that supports concur-
rent operations, implemented using atomic compare and exchange
operations [Anderson and Woll 1991].

We developed an interactive proof-of-concept meshing application
that is demonstrated in the accompanying video (see also Figure 15).
As the user interacts with our tool, a preview of the computed orien-
tation and position fields is rendered using OpenGL. The orientation
field visualization is generated by tracing flow lines on the mesh
using a simple explicit integrator. The position field visualization
is implemented as a pixel shader that maps fractional field values
into a procedural texture of a regular lattice. To render point clouds,
we simply draw circular disks with a constant value of oi and pi

per element. For triangles, we interpolate the field values over tri-
angles to provide a more pleasing visualization that is continuous
almost everywhere (exceptions are edges of triangles containing sin-
gularities). To interpolate field values, we must once more remove
ambiguities due to the underlying symmetry groups. This is done in
a geometry shader, which implements the search over the associated
quotient spaces and generates new triangles whose parameters can
be interpolated linearly by the GPU rasterizer.

We provide the full source code of our method and cross-platform
binaries in the supplemental material. Additionally, we include all
mesh files that are needed to reproduce our comparisons, as well
as instructions for reproducing them with our binary. Experiments
were conducted on a 12-Core 2.7 GHz Intel Xeon E5 workstation
with 64 GB of memory, except for the large St. Matthew mesh,
where we used a 16-core Intel Xeon machine with 256 GB memory.
The statistics for all of our comparisons are in Table 1. In these
comparisons, we always used extrinsic energies and we only control
the density of the output to match the results of the other algorithm,
or to achieve a sufficiently high resolution for our method. We
subdivide all quad-dominant meshes with one step of Catmull-Clark
subdivision to make the results comparable between methods.

Triangle meshing. We compare our triangle meshing results ob-
tained with a 6-RoSy [Nieser et al. 2012] and 6-PoSy with [Surazh-
sky et al. 2003] and [Pietroni et al. ] in Figure 16. The former uses
local operations to obtain a uniform distribution of the samples; our
method outperforms it both in terms of isotropy and regularity, using
5k singularities instead of 20k (Figure 16, top). [Pietroni et al. ] uses
a global parametrization constructed with an iterative simplification
method and produces a more regular mesh than ours (Figure 16, bot-
tom), but with a much higher angular distortion (standard deviation
of 17◦ compared with 5◦ for us).

Figure 16: Triangle meshing comparison: [Surazhsky et al. 2003]
(top left), [Pietroni et al. ] (bottom left) and our results on the right.
Note that our meshes are better aligned to the shape features.

Quad-dominant meshing. By combining a 4-RoSy with a 4-
PoSy, our algorithm produces quad-dominant meshes with pen-
tagons and triangles in the vicinity of position singularities. We
observe that our method achieves a much higher regularity (148
singularities vs. 436) compared to [Alliez et al. 2003] (Figure 17).
Our elements are also more uniform, with a normalized area stan-
dard deviation of 0.17 instead of 0.62 (measured on the Pig dataset).
PGP [Ray et al. 2006] generates meshes with good alignment and
similar numbers of singularities, but introduces noticeable errors be-
cause vertices of the output mesh do not snap to geometric features.
Our extrinsic position smoothing considerably improves on this.



Figure 17: Quad-dominant meshing comparison: Top left: [Alliez
et al. 2003] and our result (right), which is more uniform and con-
tains fewer irregular vertices. Bottom: [Ray et al. 2006] (left) and
our result, which snaps to geometric features of the input mesh.

Figure 18: Quadrilateral meshing comparisons: [Bommes et al.
2009] (top left), [Tarini et al. 2010] (bottom left) and ours (right).

Quadrilateral meshing. Our results are less regular than global
parametrization algorithms due to the higher number of singularities
that we use to obtain a perfect alignment to the orientation field and
a highly uniform mesh. We compare with [Bommes et al. 2009] in
Figure 18 and with [Bommes et al. 2013b] in Figure 19. In both
cases, our uniformity is higher, but we introduce more singularities
(for example, 208 additional singularities are introduced in Figure
Figure 18, top).

On the other hand, compared to the robust and local quadrangulation
method proposed in [Tarini et al. 2010], our approach is significantly
superior: we obtain higher isotropy and regularity, while naturally
aligning to shape features (Figure 18, bottom row).

Our approach is easily generalizable to different field symmetries:
in Figure 20, we compare 4-PoSy fields computed starting from a
2-RoSy and a 4-RoSy. It is interesting to observe that when starting
from a 2-RoSy, we obtain a consistent assignment of colors in the
parametric lines.

Figure 19: Quadrilateral meshing comparison continued: [Bommes
et al. 2013b] (left), and ours (right). Our method introduces addi-
tional singularities to improve the isotropy of the output mesh. On
the knot mesh, our parameter-free extrinsic formulation achieves
better alignment to shape features.
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Figure 20: The Owl dataset (left), a 4-PoSy computed using a
2-RoSy (middle) and a 4-RoSy (right). Bottom left: visualization of
our extrinsic energy function for the result on the right. The steps
through the hierarchy lead to a visible staircase pattern.

Point cloud meshing. We show an example of a quad-dominant
mesh created directly from a point cloud in Figure 21.

Note that since we do not extract a volumetric scalar field, we are not
able to automatically fill the regions that are not covered by the point
cloud, and those become holes in the final mesh. We use K = 10
nearest neighboring points to establish the adjacency information.

Figure 21: A large point cloud with 4.9 million points (left) is
directly meshed into a high-quality isotropic quad-dominant mesh
(right) in 34.4 seconds by our algorithm.



Custom metrics. It is straightforward to use custom metrics due
to the local nature of our iteration. Figure 22 shows examples with a
varying scale, created by adapting the parameters of the smoothing
iterations when visiting vertices.

Figure 22: Custom metrics are easily integrated into our method
by changing the parameters of the local smoothing iterations. Left:
adaptive resolution in a triangle mesh based on the mean curvature
(middle). Right: quad-dominant mesh with varying scale based on
the distance to a chosen point on the mesh.

Relation to convex energies. Convex smoothness energies have
been proposed to interpolate N -RoSy fields [Knöppel et al. 2013;
Diamanti et al. 2014]; these energies are attractive because their
global minimum can be found by solving sparse linear systems. The
original formulation by Knöppel et al. involves two major modifica-
tions: first, field values are mapped through a nonlinear change of
variables, eliminating the need for period jumps. Second, unit norm
constraints are removed to ensure that the energy remains stable
under refinement. Both of these changes are also simple to realize
in the intrinsic version of our method.

We implemented these changes and compared the smoothness energy
by Ray et al. [2008] against Knöppel et al.’s convex energy, using
the same intrinsic position field and extraction pipeline for both.
On average, the convex energy produced meshes with a marginally
better distribution of face angles with a standard deviation of 9.55◦

compared to 9.70◦ for Ray et al.—a 1.5% relative improvement.
However, this came at a cost of 18.4% additional orientation sin-
gularities. When used for remeshing, the output of the convex

Ours — Intrinsic
112 singularities

Knöppel et al. — smoothest
140 singularities

Knöppel et al. — λ = ¼
300 singularities

Knöppel et al. — λ = -½
426 singularities

Knöppel et al. — λ = -1
602 singularities

Ours — Extrinsic
132 singularities

Figure 23: N-RoSy smoothness: our method generates smoother
fields with fewer singularities than recently proposed convex ap-
proaches. This even holds when comparing our extrinsic energy to
the smoothest unaligned energy of Knöppel et al. [2013].

formulation led to considerably higher spatial distortion with a stan-
dard deviation 0.183 in normalized face areas compared to 0.168 for
Ray et al.—a relative deterioration by 9.2%. The number of position
singularities also increased by 20.3% for the convex energy.

The reader might find these results surprising, since the energy
by Knöppel et al. was shown to be globally optimal. However,
to achieve this optimality, the method must perform a nonlinear
transformation of the orientation field, which fundamentally changes
the interpretation of smoothness. We conclude that the original non-
convex energy is in fact a superior description of field smoothness
for the purpose of remeshing.

Figure 23 shows a visualization of fields generated using different
energies. In this figure, the fields corresponding to the convex energy
were created using the reference implementation by Knöppel et al.

Scalability and robustness. A major advantage of the simplicity
and locality of our operations is their scalability and robustness.
Our algorithm meshes the 372 million triangle 3D scan in Figure 24
using only 9 minutes and 18 seconds. On all the meshes in the global
parametrization benchmark proposed by [Myles et al. 2014], our
algorithm completes in less than a second. Note that this benchmark
has been designed for non-rounded global parametrization, which is
not suitable for quadrangulation, since the grid does not close up on
the seams. Our method is the first that can automatically triangulate
and quadrangulate such a large database of challenging datasets.
We showcase a few results in Figure 25, and attach all 116 models,
triangulated and quadrangulated, in the additional material, together
with the breakdown of the timings for each step of our algorithm
and the instruction to reproduce all results with the provided binary.

Figure 24: Our method scales to extremely large datasets, such
as the 372M triangle St. Matthew statue acquired by the Digital
Michelangelo project [Levoy et al. 2000]. The middle column shows
a visualization of the position field, and the right is the final quadri-
lateral mesh. The entire process takes 9 minutes and 18 seconds.

Figure 25: A selection of the 116 models we triangulated and
quadrangulated with our algorithm. The wireframe can be seen by
zooming in or looking at the mesh files attached to the submission.

Asymptotic running time. We compared the running time of sev-
eral meshing techniques on a progressive version of the Lucy statue
sampled at regular intervals (Figure 26), running all implementations
with default parameters except for a fixed target edge length. For
PGP [Ray et al. 2006], we used the implementation in Graphite,
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Figure 26: Top row: Running time comparison against several
global methods for a progressive input mesh (lucy) sampled at
regular intervals between 52 and 28M faces. Top: linear and log-
log plots of the running time. Bottom left: Fits obtained by linear
regression. The indicated slopes provide an approximation of the
polynomial order of complexity. The parallel implementation of
our method benefits from larger input sizes, hence the sub-linear
behavior. Bottom right: running time of our method’s individual
components for the same input.

and for MIQ [Bommes et al. 2009], we used the function miq in
libigl, which builds on the CoMISo solver by Bommes et al. (for
fairness, we only report the time spent in CoMISo). The IGM re-
sults [Bommes et al. 2013b] were directly provided by the authors
and ran on a MacBook Pro (i7, 2.6 GHz, 16GB RAM). The running
time of this method is exponential in the number of singularities,
and the authors stopped the CPLEX optimizer after 100 seconds,
corresponding to about 200 singularities. We compare against both
serial and parallel implementations of our technique. The plots illus-
trate significant superlinear growth in computation time in currently
used global methods, compared to linear growth using our approach.

5 Concluding remarks

We proposed a novel algorithm for isotropic or scale-varying, semi-
regular meshing that is robust, scalable and controllable. We demon-
strated its practical utility by meshing hundreds of input models,
some of which exceed several hundred million elements.

The three steps of our algorithm have been designed to work to-
gether, but each one can be used independently: The orientation
field optimization can be incorporated into any field-aligned quad-
rangulation pipeline, enhancing it by providing a parameter-free
method that computes shape-aligned fields. Similarly, the position
field optimization can process arbitrary orientation fields generated
with other methods. These two stages are similar, simple and ro-
bust: we provide a self-contained implementation in 100 lines of
Python code in addition to an optimized, parallel C++ reference
implementation. Finally, our mesh extraction algorithm could be
adapted to work on global parameterizations, providing a simple
and robust solution for this challenging task. The locality of our
approach makes it impervious to non-manifold input (Figure 3).

Considerable flexibility with regards to the input graph enables
unified treatment of point clouds, range scans and triangle meshes,
for which fields can either be discretized on vertices or faces.

Our algorithm has one major limitation: we introduce more singu-
larities than global parametrization methods. Singularities can be
collapsed with our interactive brushes, and we would like to inves-

tigate further applications of these brushes to automatically reduce
the number of singularities.

Our approach builds upon existing state-of-the-art global
parametrization methods [Ray et al. 2006; Bommes et al. 2009],
tackling the same problems with a purely local optimization ap-
proach that is radically different from existing techniques. We be-
lieve that its properties, in particular its linear running time with
respect to the size of the input, will make it very appealing to both
researchers and practitioners. Many interesting directions for future
works are possible, including new types of interactive strokes and the
generalization of our approach to semi-regular volumetric meshes.

To support and foster research in this area, we will release our
optimized parallel implementation of the algorithms presented in
this paper together with all our datasets, comparisons and results.
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AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3.
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Area Angles
Dataset Algorithm |V| |Vout| S(RoSy) σ Min Max σ Min Min(�) Max Max(�)

[0] [1] [1] [0] [60/90] [60/90] [60/90] [60/90]

Armadillo [Pietroni et al. ] 20002 21387/20780 69(N/A)/1388(264) 0.14/0.11 0.14/0.33 2.79/1.76 17.95/4.37 1.95/17.98 43.74/56.44 175.40/135.87 78.46/63.79
Bunny [Pietroni et al. ] 34834 4502/4452 48(N/A)/315(82) 0.13/0.11 0.38/0.39 2.59/1.72 16.64/4.61 11.03/19.89 45.28/56.23 157.03/116.52 77.79/64.04
Gargoyle [Pietroni et al. ] 24992 14582/14171 41(N/A)/1241(491) 0.13/0.12 0.13/0.36 1.91/1.72 17.00/5.09 7.81/13.43 44.15/55.84 162.59/152.13 78.33/64.44
Omotondo [Pietroni et al. ] 50002 4862/4754 14(N/A)/413(133) 0.10/0.12 0.43/0.43 1.41/1.70 11.60/5.22 26.16/25.13 48.39/55.80 106.18/124.52 72.72/64.66
Bunny [Alliez et al. 2005] 99999 10020/10037 3263(N/A)/515(102) 0.11/0.10 0.13/0.30 4.85/1.68 16.14/4.10 4.35/19.01 44.62/57.00 152.32/135.41 78.06/63.23
MaxPlanck [Alliez et al. 2005] 23609 100001/99627 33268(N/A)/1534(44) 0.09/0.06 0.00/0.23 1.57/1.95 11.58/2.18 0.00/22.92 50.49/58.45 180.00/128.20 73.19/61.61
Rotor [Alliez et al. 2005] 2400 10210/9969 3555(N/A)/528(52) 0.17/0.10 0.00/0.32 2.81/1.64 24.84/4.06 0.00/22.06 36.70/56.87 180.00/116.48 88.49/63.30
David [Surazhsky et al. 2003] 99977 99980/99053 20881(N/A)/5482(2156) 0.39/0.09 0.02/0.15 134.94/1.96 9.34/4.22 0.92/5.74 52.87/56.99 167.27/167.73 68.63/63.22
Fandisk [Surazhsky et al. 2003] 7229 5051/4962 711(N/A)/401(33) 0.18/0.12 0.21/0.33 2.51/1.64 8.77/5.16 19.44/18.10 52.76/56.01 118.86/116.56 68.68/64.21
Rocker Arm [Surazhsky et al. 2003] 42747 10044/9990 2816(N/A)/533(74) 0.41/0.10 0.04/0.33 2.60/1.60 10.57/3.66 10.41/27.76 50.95/57.01 154.64/111.42 70.47/63.11

David [Alliez et al. 2003] 24085 42871/41817 10309(N/A)/2708(1826) 0.75/0.20 0.01/0.05 12.30/2.60 24.54/12.31 4.40/3.78 64.16/79.26 178.55/180.00 115.76/100.34
Pig [Alliez et al. 2003] 1843 3341/3406 436(N/A)/148(40) 0.62/0.17 0.05/0.27 5.02/1.74 18.84/9.06 9.54/8.40 72.04/82.71 171.10/180.00 107.48/97.44
Fandisk [Marinov and Kobbelt 2006] 7229 754/2208 59(N/A)/108(30) 0.60/0.18 0.26/0.27 4.83/1.84 19.59/8.85 27.16/19.20 73.70/83.46 161.84/180.00 107.79/97.07
Fandisk d. [Marinov and Kobbelt 2006] 7229 1968/5658 104(N/A)/162(30) 0.54/0.14 0.22/0.37 5.34/1.81 14.08/6.51 14.02/24.67 79.30/85.27 180.00/180.00 101.63/94.98
Rocker Arm [Marinov and Kobbelt 2006] 10044 1644/6562 117(N/A)/232(44) 0.43/0.15 0.14/0.24 3.40/1.94 16.64/7.43 28.59/2.44 75.51/83.99 165.61/179.99 105.33/96.24
Fandisk [Ray et al. 2006] 7229 2614/2386 110(N/A)/110(30) 0.23/0.18 0.07/0.22 1.86/1.75 8.92/8.21 34.28/19.35 82.78/83.78 159.86/180.00 97.50/96.64
Hand [Ray et al. 2006] 4242 1082/1010 66(N/A)/51(40) 0.32/0.17 0.08/0.30 2.07/1.65 10.39/9.25 38.14/29.30 80.79/82.27 147.02/180.00 99.76/97.67
Hand [Ray et al. 2006] 10044 1078/978 59(N/A)/74(38) 0.28/0.20 0.02/0.28 1.93/1.71 12.39/12.62 31.00/26.81 78.75/79.39 152.68/180.00 101.88/101.01
Hand-highres [Ray et al. 2006] 4242 10452/9990 311(N/A)/182(40) 0.19/0.11 0.01/0.21 2.00/1.66 8.12/6.89 0.55/20.28 83.91/85.56 173.57/180.00 96.44/94.61

Bunny [Tarini et al. 2010] 34834 11020/10960 3438(N/A)/350(40) 0.22/0.15 0.60/0.27 4.23/1.75 16.30/7.86 24.25/17.86 73.70/83.43 178.48/180.00 109.77/96.71
Gargoyle [Tarini et al. 2010] 24992 11104/10950 4283(N/A)/659(194) 0.15/0.19 0.52/0.11 4.24/1.96 17.49/10.97 1.00/17.05 72.22/80.19 179.10/180.00 110.74/99.24
Omotondo [Tarini et al. 2010] 50002 10049/10054 3902(N/A)/367(70) 0.21/0.16 0.53/0.19 2.55/1.88 17.13/8.50 40.69/12.95 72.33/82.81 163.30/180.00 111.67/97.47
Rampant [Tarini et al. 2010] 49873 10019/9950 3749(N/A)/455(130) 0.28/0.17 0.28/0.15 3.64/1.93 17.92/8.93 12.22/9.18 71.76/82.39 178.81/180.00 111.83/97.63
Beetle [Bommes et al. 2009] 17908 4063/7928 6(6)/286(41) 0.17/0.17 0.22/0.17 2.37/2.30 8.79/8.89 40.80/19.16 82.80/83.36 172.74/180.00 97.27/96.97
Fandisk [Bommes et al. 2009] 7229 766/1502 30(30)/67(30) 0.42/0.18 0.39/0.24 3.36/1.75 7.54/8.64 48.76/20.20 83.18/83.61 149.55/179.97 96.41/96.72
Fertility [Bommes et al. 2009] 13971 3351/6812 48(48)/256(46) 0.26/0.15 0.49/0.36 3.30/1.73 8.35/7.52 31.30/38.62 82.08/83.72 146.17/165.17 97.65/96.47
RockerArm [Bommes et al. 2009] 20776 1127/2230 36(36)/123(36) 0.30/0.17 0.28/0.39 2.50/1.91 6.88/9.02 49.16/34.76 83.63/82.27 147.98/180.00 96.42/98.10
RockerArm d. [Bommes et al. 2009] 20776 9413/18780 36(36)/419(42) 0.20/0.12 0.29/0.32 2.17/1.96 7.91/5.91 29.81/18.46 83.79/85.53 169.71/180.00 96.31/94.71
Buddha [Bommes et al. 2013b] 99370 5366/5312 107(107)/328(94) 0.28/0.20 0.15/0.13 2.99/1.82 13.39/10.76 11.85/20.59 77.06/80.11 173.79/180.00 102.68/99.87
Fandisk [Bommes et al. 2013b] 7229 822/3296 30(30)/117(30) 0.42/0.14 0.13/0.27 2.41/1.60 13.37/7.05 24.51/33.66 78.89/84.53 172.86/180.00 101.22/95.75
Feline [Bommes et al. 2013b] 9998 1047/12554 109(109)/592(112) 0.34/0.16 0.09/0.17 3.01/1.97 18.64/8.51 18.67/7.12 70.41/82.76 167.59/179.99 108.44/97.31
Hand [Bommes et al. 2013b] 4242 182/1094 39(39)/43(36) 0.31/0.18 0.24/0.28 1.78/1.69 12.91/8.09 19.11/19.00 77.88/83.50 160.00/160.40 102.17/96.50
Knot [Bommes et al. 2013b]* 240 5133/5108 17(N/A)/184(4) 0.29/0.15 0.47/0.21 2.13/1.66 6.09/8.06 55.22/20.57 84.00/84.23 137.02/180.00 95.40/96.32
Kitten [Bommes et al. 2013b]* 50000 3607/3594 62(N/A)/127(44) 0.50/0.16 0.01/0.27 5.46/2.01 8.51/7.44 17.08/28.94 81.73/83.51 172.38/158.65 98.01/96.63

Table 1: Statistics of our experiments. The results obtained with our method are highlighted in bold. From left to right: number of vertices in
the input and in the output; number of singularities (in parenthesis the number of orientation field singularities, when applicable); standard
deviation, mean and max areas, all normalized over the average area; standard deviation, min, average of the min per element, max, average
of the max per element angles. All models used to generate this table are attached to the submission as additional material. They were used by
the authors for images in the corresponding submissions, except for the last two results which are marked with a “*”. These two models were
kindly created by the authors for this comparison using a default set of parameters.
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RAY, N., LI, W. C., LÉVY, B., SHEFFER, A., AND ALLIEZ, P.
2006. Periodic global parameterization. ACM Trans. Graph..

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-
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YAN, D.-M., LÉVY, B., LIU, Y., SUN, F., AND WANG, W. 2009.
Isotropic remeshing with fast and exact computation of restricted
Voronoi diagram. Comput. Graph. Forum 28, 5.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector field
design on surfaces. ACM Trans. Graph. 25, 4 (Oct.).

ZHANG, M., HUANG, J., LIU, X., AND BAO, H. 2010. A wave-
based anisotropic quadrangulation method. ACM Trans. Graph..

A Appendix

Lattice rounding operation. Given a regular grid with orienta-
tion o, position p and normal n, the following operation rounds a
position p′ to the nearest lattice point:

round4(n,o,p,p′) := p + ρ
[
obγ1 + 1/2c+ o′bγ2 + 1/2c

]
,

where o′ := rot(n, 2π/sp)o, γ1 := ρ−1〈p′ − p,o〉 and γ2 :=
ρ−1〈p′−p,o′〉 and ρ is the target edge length. For the sp = 6 case,
the rounding operation first unwarps the lattice:

round6(n,o,p,p′) := p + ρo b( 4γ1 − 2γ2)/3 + 1/2c+
ρo′b(−2γ1 + 4γ2)/3 + 1/2c.

Intermediate position. We define a position qij that minimizes
the distance to vertices vi and vj while being located in their re-
spective tangent planes, i.e.:

minimize ‖vi − qij‖22 + ‖vj − qij‖22
subject to 〈ni,qij〉 = 〈ni,vi〉 and 〈nj ,qij〉 = 〈nj ,vj〉.

This constrained least-squares problem has a simple solution:

qij = 1
2
(vi + vj)− 1

4
(λini + λjnj),

where the Lagrange multiplier λi is

λi =
2
〈
(ni + 〈ni,nj〉nj , vj − vi

〉
1− 〈ni,nj〉2 + ε

,

and λj is defined analogously with i and j swapped. The parameter
ε (set to 10−4 in our implementation) ensures that qij approximates
the arithmetic mean of vi and vj when ni ≈ nj .


